Quantum Key Distribution (QKD)

Prashanta Kharel Applied Physics Seminar November 2012

Facebook helps you connect and share with the people in your life.

Sign Up It's free and always will be.

By clicking Sign Up, you agree to our Terms and that you have read our Data Use Policy, including our Cookie Use.

Sign Up

Classical Key Distribution

RSA Encryption

Message: "SEAS"

"01000101"

- Relies on two distinct large prime numbers
- factorization of prime
- exponential problem
- limited only by computational power

Quantum Key Distribution(QKD)

- relies on fundamental quantum mechanics
- unconditionally secure
- eavesdropper can be detected

Classical Channel Bob Alice Quantum Channel Eve

BB84-Protocol

RSA Encryption

- Uses polarized light
- Uncertainty principle for single photons

Calcite Crystal

BB84-Protocol

How to share a secret key?

> Quantum Channel

H/V Basis D/d Basis H=0D=0V=1d=1↑ Τ Bits 0 $\begin{array}{c} R & R & R & R & D & R & D & D \\ \rightarrow \uparrow \uparrow \rightarrow \swarrow \uparrow \checkmark \checkmark \checkmark \checkmark \end{array}$ R D D Alice's Random Basis Photon Alice Sends Bob's Random Basis D R R R R D D R 1 ()Bits received by Bob ()1 1 1 $\left(\right)$ Bob Report Basis R R R D D R \square 1) OK OK OK OK Alice confirms correct ones OK OK Public Channe Shifted Key () $\left(\right)$ ()

Correlated measurements

- Shifted key is smaller
- More sensitive to eavesdropping

Conclusion

- 2009 Yamamoto, up to 105 km, 17 kbits/sec
- 2012 Shields, up to 90 km, ~1Gbits/sec

- High Key Generation кате
- Noisy channel
- QKD over longer distances

Questions

Sources

- C. H. Bennett and G. Brassard, "Quantum cryptography: Public-key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, (IEEE Press, 1984), pp. 175–179; C.H. Bennett and G. Brassard, "Quantum public key distribution," IBM Technical Disclosure Bulletin 28, 3153–3163 (1985).
- N. Ilic, "The Ekert Protocol", University of Waterloo
- Y. Yamamoto et al., "Quantum key distribution over 40 dB channel loss using superconducting single photon detectors," arXiv, 2009
- Zeeya Merali, "Quantum cryptography conquers noise problem," Nature, 2012